Sunday 21 June 2009

Homosexuality is quite widespread in animals

Same-Sex Behavior Seen in Nearly All Animal Groups, Review Finds
UC Riverside evolutionary biologists find majority of studies focus on why same-sex behavior in animals exists, but not what its consequences are

RIVERSIDE, Calif. – Same-sex behavior is a nearly universal phenomenon in the animal kingdom, common across species, from worms to frogs to birds, concludes a new review of existing research.

“It’s clear that same-sex sexual behavior extends far beyond the well-known examples that dominate both the scientific and popular literature: for example, bonobos, dolphins, penguins and fruit flies,” said Nathan Bailey, the first author of the review paper and a postdoctoral researcher in the Department of Biology at UC Riverside.

There is a caveat, however. The review also reports that same-sex behaviors are not the same across species, and that researchers may be calling qualitatively different phenomena by the same name.

“For example, male fruit flies may court other males because they are lacking a gene that enables them to discriminate between the sexes,” Bailey said. “But that is very different from male bottlenose dolphins, who engage in same-sex interactions to facilitate group bonding, or female Laysan Albatross that can remain pair-bonded for life and cooperatively rear young.”

Published June 16 in the journal Trends in Ecology & Evolution, the review by Bailey and Marlene Zuk, a professor of biology at UCR, also finds that although many studies are performed in the context of understanding the evolutionary origins of same-sex sexual behavior, almost none have considered its evolutionary consequences.

“Same-sex behaviors—courtship, mounting or parenting—are traits that may have been shaped by natural selection, a basic mechanism of evolution that occurs over successive generations,” Bailey said. “But our review of studies also suggests that these same-sex behaviors might act as selective forces in and of themselves.”

A selective force, which is a sudden or gradual stress placed on a population, affects the reproductive success of individuals in the population.

“When we think of selective forces, we tend to think of things like weather, temperature, or geographic features, but we can think of the social circumstances in a population of animals as a selective force, too,” Bailey said. “Same-sex behavior radically changes those social circumstances, for example, by removing some individuals from the pool of animals available for mating.”

Bailey, who works in Zuk’s lab, noted that researchers in the field have made significant strides in the past two and a half decades studying the genetic and neural mechanisms that produce same-sex behaviors in individuals, and the ultimate reasons for their existence in populations.

“But like any other behavior that doesn’t lead directly to reproduction—such as aggression or altruism—same-sex behavior can have evolutionary consequences that are just now beginning to be considered,” he said. “For example, male-male copulations in locusts can be costly for the mounted male, and this cost may in turn increase selection pressure for males’ tendency to release a chemical called panacetylnitrile, which dissuades other males from mounting them.”

Next in their research, Bailey and Zuk plan to begin experimentally addressing some of the many issues raised in their review.

Said Bailey, “We want to get at this question: what are the evolutionary consequences of these behaviors? Are they important in the evolution of mating behavior, or do they just add extra ‘background noise’? We are pursuing work on the Laysan Albatross, in which females form same-sex pairs and rear young together. Same-sex behavior in this species may not be aberrant, but instead can arise as an alternative reproductive strategy.”

Source:http://newsroom.ucr.edu/news_item.html?action=page&id=2122
Nathan Bailey nathanb@ucr.edu
Marlene Zuk zuk@ucr.edu

No comments:

Post a Comment